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Abstract

A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar,

separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy
National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not

available to the authors until the conclusion of this session. The first set of experiments considered here involve
Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30" flare angle at several Reynolds numbers

sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of

experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 ° and aft-cone
angle of 55 °. Both sets of experiments involve 30" compressions. Location of the separation point in the numerical

simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical

simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was
easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote

convergence.
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Nomenclature

pressure coefficient, 2(p-p_)/p_V_ 2
reference length from leading edge to junction att
Mach number i

molecular weight, kg/k-mole j

pressure, N/re'- sep
Prandtl number w
wall heat transfer rate, W/m 2 oo

p_V_[_,, Reynolds number, m_
arc length, mm
hypersonic approximation to Stanton number, A

2qw/p_V_ 3 C
temperature, K HCEF
vibrational temperature, K HCTF
velocity components in x and r directions, NS

respectively, m/s PG

fiee stream velocity, m/s S
cylindrical coordinates, cm SDB

eigenvalue limiter TE
TLNS

specific heat ratio
viscosity, kg/m-s TN

density, kJm 3 U

Subscripts
attachment point, zero shear
stream wise coordinate direction
normal coordinate direction

separation point, zero shear
wall surface conditions

free stream conditions

Table Abbreviations

adapted grid, shock aligned
curve fit collision cross section

hollow cylinder, extended flare
hollow cylinder, truncated flare
Navier-Stokes

perfect gas
Sutherland's law

sharp, double cone
thermal equilibrium

thin-layer Navier-Stokes

thermal nonequilibrium
unadapted _id
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Introductlon

A series of numerical simulations were conducted

of experiments performed in the LENS facility for the
purpose of code validation under hypersonic
conditions _. The experiments were conceived to

challenge simulation capabilities under conditions of

large-scale separation while minimizing complicating
factors associated with turbulence, gas chemistry, and

ttu'ee-dimensionat end-effects. Experimental data will
not be released until numerical simulations are reported

on January 11, 2001'-.
The validation exercise here is similar to the First

Europe-US High Speed Flow Field Database
Workshop 3. The hollow cylinder, truncated flare

configuration was featured in that workshop where

both the original experiment in R5Ch and several
computational simulations were reported. More

recently, experimental data and numerical simulations
were reported _ of two, double-cone (25°/35 ° and
25°/50 °) shock-shock interaction problems. The

effective 10° compression case produced an Edney s

Type VI interaction, similar to the interaction observed
here for the hollow-cylinder flare. The effective 25 °

compression case produced an Edney Type V
interaction (with some allowance for viscous flow
features) similar to the interaction produced here by the

25°/55 ° sharp, double cone.
The test conditions are closely related to the

problem of predicting control surface effectiveness and
heating at large deflection angles for access to space

vehicles. The problem has been computationally
• • 6

investigated, for example, on the Space Shuttle and
X-337. The axisymmetric flow of the present test

problems enables a much more comprehensive grid

convergence study than possible on these more
complex configurations.

Models

Schematics of the models and representative

pressure fields are shown in Figures 1-3. Flow is from

left to right. The sharp, double cone (SDC) model is
shown in figure 1. The hollow cylinder, extended flare
(HCEF) model is shown in figure 2 and the hollow

cylinder, truncated flare (HCTF) is shown in figure 3.
The leading edge of the hollow cylinder is sharp. Flow

through the hollow cylinder is designed to pass through
the model without influencing the external flow. The

extended flare may allow larger separation as

compared to the truncated flare in some cases where
the shock impingement moves past the truncation

height.

Test Conditions

Test conditions are presented in Table 1.
Fundamental quantities in Table 1 (velocity, density,

and temperature) are taken from the Calspan report;

Mach number and Reynolds number are derived from
those quantities using appropriate thermodynamic and

transport property relations for molecular nitrogen in
the simulation code. All experiments were conducted

in the Calspan-University at Buffalo Research Center
(CUBRC) in the Large Energy National Shock (LENS)
tunnel _. Nominal flow conditions were at Mach 9.5 and

Mach 11.5 with Reynolds numbers per meter from
140000 to 360000 in nitrogen. Steady, laminar,
axisymmetric flow was reported for all tests considered

here. Experimental data includes surface pressure and

heating. This data will only be made available at the
conclusion of the conference session on January I I,
20012 .
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Figure 1: Sharp, double cone (SDC) and computational

domain bounding pressure contour solution.

\ Feeder Block J fJ I I

Figure 2: Hollow cylinder, extended flare (ttCEF) and

computational domain bounding pressure contour
solution.



actual model

Figure 3: Hollow cylinder, truncated flare (HCTF) and

computational domain bounding pressure contour
solution.

Numerical Algorithm

InvisciO: The Langley Aerothermodynamic
Upwind Relaxation Algorithm (LAL_A) _'9 is used for

all simulations in this report. Key elements of LAURA
include Roe's averaginf ° and Yee's Total Variation
Diminishing (TVD) _1formulation of second-order,
inviscid fluxes. Yee's TVD formulation has been found

to be exceptionally robust and Courant-number-
independent using point-implicit relaxation for

hypersonic flow simulations. The TVD algorithm uses
a non-linear, minmod function as a flux limiter that

maintains second-order accuracy away from extrema
but can admit limit cycles in the convergence process,

particularly in the vicinity of captured shocks. This
occurrence usually manifests itself as a stalling of

convergence at a very low error norm, essentially a
benign ringing in the solution at a level that has no

impact on aerothermodynamic quantities. However, the
sharp, double cone test problem has proven to be more

challenging then the typical application; the ringing has
more profound consequences as will be discussed in
the results section.

Viscous: Viscous flux is computed using central
differences. A thin-layer, Navier-Stokes (TLNS)

formulation is applied in both i andj coordinate
directions. This formulation includes all but the cross

derivative terms of the Navier-Stokes (NS) equation

set. The complete NS equation set is also applied.
Comparisons of TLNS and NS simulations show
almost identical results for the test problems.

Gas Model: Perfect gas simulations for nitrogen

specify _'= 1.4, ,.1¢= 28.018, Pr = 0.71, and Sutherlands

law (S) for viscosity, _t _1.3998 10 6 T3n/(T +

106.667). Options for thermal equilibrium (TE) and

thermal nonequilibrium (TN) were also exercised for

some simulations. In these options the gas is modeled
as single species molecular nitrogen; the TE and TN

specifications invoke thermodynamic curve fits for

heat capacity and enthalpy as functions of temperature.
Temperature in these tests is not high enough to

promote significant dissociation of nitrogen. Transport
properties in both the TIE and TN options are derived

from curve fits (C) of collision cross-sections for

molecular nitrogen.
Thermal nonequilibrium is modeled using a two-

temperature model. Translational and rotational
energies are characterized by temperature T.

Vibrational and electronic energies are characterized

by temperature Tv. In the test problems considered
here, vibrational and electronic energy modes are

nearly frozen (except within the recirculation regions)

making the constant y perfect gas model a good

approximation for the equation of state.
Grid: The computational domain for each

configuration is included in figures 1-3. The outer

boundary of each domain is initialized with straight

lines fi'om a point just upstream and above the leading
edge of the model to an outflow boundary. The

position of the boundary is designed to fully contain
the shock. Grid lines emanating from the body of the

SDC to the outer boundary are straight and parallel, at
an angle normal to a reference line extending from the

leading to trailing edge. The HCEF and HCTF
configurations utilize a curvilinear grid that is normal

to the body. Both the SDC and sharp leading edge
hollow cylinder flare utilize a feeder block. The lower

boundary of the feeder block is formed by the flow axis
in the case of the SDC configuration and is an

extension of the cylinder surface in the HCEF and

HCTF configurations.
An exponential stretching function is used to

distribute _'id lines in thej direction from the body

across the boundary layer and the shock. Cell Reynolds
numbers less than 5 (HCEF, HCTF) or I I (SDC) and

maximum stretching factors less than or equal to 1.11

throughout the domain are within the LAURA
parameter space for which heating in attached flows is

expected to be grid converged. The experience base for
stream wise resolution required to get grid converged

separated flows is not sufficiently developed for apriori

estimates of grid convergence.
In the hollow cylinder configurations a shock

alignment algorithm in LAURA was used to bring the

outer boundary in closer to the shock and make best
use of grid resources. The alignment procedure in the

SDC applications induced large-scale instabilities that
did not damp out; the shock position would oscillate

and waves would bounce off the outer boundary before

it was re-adapted. Consequently, larger numbers of

3



grid in the j direction are required. The ranges of grid
resources used are defined in Tables 2-4.

Boundary Conditions: Boundary conditions in
LALrRA require definition of variables within pseudo
ceil centers across the boundary. No-slip, cold-wall

boundary conditions are used at the surface. Fixed,

supersonic, inflow boundary conditions are applied at
the outer (/= j,,,,O boundary and the i = 1 boundary of

the feeder block. Extrapolation is used across the
predominantly supersonic outflow boundary. The j = 1

boundary of the feeder block uses an axis boundary
condition in the case of the SDC and an extrapolation

in the case of the hollow cylinder flares. Computed
velocities remained parallel to this boundary using this

specification.

Model Run V_, m/s

HCEF 8 2667.

HCEF 9 2566.

HCEF 11 2609.

HCEF 14 2432.

HCTF 18 2661.

SDC 24 2737.

SDC 28 2664.

Table 1" Test Problems

p_,kg/m _ T_, K T_,K
0.001206 132.8 296.7

0.000845 121.1 296.7

0.000507 128.9 297.2

0.000794 156.1 295.6

0.001175 130.6 295.6

0.001247 200.6 295.6

0.000655 185.6 293.3

M_

11.35

11.44

11.27

9.55

! 1.42

9.48
6.59

I
Re_, m
359600.

264830.

152010.

185800.

355210.

263790.

144010.

Case

I 272

2 272

3 544
4 272 x

5 272 x

6 544 x

(I x J)

x 96, U

x96, U

Table 2: LAURA Cases for Run 8

7 544 x 96, A

8 1088 x 96, A

9 1088 x 96, A*

10 544 x 96, A

11 544 x 96, A
12

*A very

ei Viscous

0.300 TLNS, S

0.001 TLNS, S

x 96, U 0.300 TLNS, S

96, A 0.300 TLNS, S

96, A 0.001 TLNS, S

96, A 0.001 TLNS, S

0.001 NS, S

0.001 NS, S

0.001 NS, S

0,001 TLNS, C

0.001 TLNS, C

1512x192, A 0.00i ] NS, S

;mall error in L equal to

State x_t,/L
PG 0.5203

PG 0.5202

PG 0.5269

PG 0.4650

PG 0.4810

PG 0.4736

PG 0.4708

PG 0.4705

PG 0.4689

TIE 0.5342

TN 0.4794

AS_p, mm

0.722

0.722

0.362

0.734

0.732

0.367

0.367

0.184

0.183

0.362

0.366

Xalt/-L ASatt, mm

1.3132 0.757

1.3127 0.757

1.3112 0.380

1.3419 0.782

1.3322 0.775

1.3357 0.389

1.3363 0.389

1.3373 0.195

1.3329 0.194

1.2994 0.376

1.3266 0.385

PG 0.4410 I 0.18411.3475 0.098
0.28 mm out of 101.7016 mm was found and corrected after Case 8.

Table 3: LAURA Cases for Run 18

Case 0 x J) Ei Viscous State

I 272 x96, U 0.001 _NS, S , PG
2 272 x96, A 0.001 NS, S PG

3 544 x 96, A 0.001 NS, S PG

4 1088 x96, A 0.001 NS, S PG
2176 x 192, A 0.001 NS, S PG

x_p/L As_p, mm

0.5036 0.727

0.4754 0.731

0.4861 0.365

0.4840 0.182

0.4714 0.090

l Xatt/L _Sau, mm

1.3170 0.771

!.3330 0.781

i.3280 0.389

1.3284 0.194

1.3352 0.096

Hollow Cylinder Flare Results
Overview: Five test conditions involving the

hollow cylinder flare are defined in Table 1. The

most comprehensive set of tests were executed for
Run 8 on the HCEF configuration to investigate

issues of grid convergence and effects of numerical

parameters and gas models on the computed results
as defined in Table 2. Case 1 was initialized with

uniform flow. In all subsequent cases, solutions were

initialized using earlier case converged solutions.

Grid convergence for the HCTF configuration in Run
18 was also investigated as defined in Table 3.

Pressure contours and streamlines for Run 8,

Case 12 on the ttCEF are shown in figure 4 over the

cylinder and in figure 5 over the flare. The 30 ° flare

sets up an oblique shock. The high post shock
pressure is felt upstream through the boundary layer
and induces separation. A weaker oblique shock sets

up ahead of the separation point and the stronger flare
shock moves further downstream with the



reattachmentpoint.Anequilibriumconditionis
establishedwithseparationatx/L=0.441and
reattachmentatx/L= 1.348.(Inthecaseofthe
truncatedflare,theequilibriumreattachmentpoint
maybeconstrainedbythelocationofthetruncation
point).Theseparationshockovertakestheleading
edgeshockatapproximatelyx/L=0.9infigure4.
Gridresolutioninthevicinityofthisinteractionis
approximately0.1mmin thestreamwisedirection
and0.2mminthenormaldirection.Theshocks
appeartomergeintoasingleshockwiththecurrent
availableresolution.Thisseparationshockintersects
theflareshockatx/L= 1.42.Resolutioninthe
vicinityofthisinteractionisapproximately0.1mm
inthestreamwisedirectionand0.03mminthe
normaldirection.

..I

0.5 1

xtL

Figure 4: Pressure contours (flooded) and streamlines
over cylinder part of HCEF for Run 8, Case 12.

1 1.5

x/L

Figure 5: Pressure contours (flooded) and streamlines
over flare part of HCEF for Run 8, Case 12.

In figure 4, a slight upwelling of the streamline
in the reverse flow region near the wall at x/L = 0.9 is

observed. There is a local minimum in shear beneath

this upwelling but there is no embedded, counter-

rotating vortex in this simulation.
In Tables 2 and 3 the values of x_p/L and Xatt/L,

indicate locations of zero surface shear. The

separation point follows the initial pressure rise by

approximately 3 mm in Run 8. The variables As_¢v
and ASatt in the tables indicate the stream wise mesh

spacing across the separation and re-attachment

points, respectively.
Case 12 uses the densest grid but suffered some

ringing of the flux limiter so that the error norm
stalled (order 10:_). Case 9 results have the best

combination of residual convergence (order 10v) and

grid density. Using either Case 9 or 12 results as a
reference in Table 2, it is evident that grid adaptation

in coarser grids provides earlier separation and better

agreement with the reference than unadapted results.
For example, contrast Case 4 with Case I and Case 6
with Case 3.

Residual convergence: In all cases except Case
12, the L2 error norm dropped to order 10_ or lower.

Case ! 2 residual convergence stalled at an L2 error
norm of order 10 3 for 128 hours of single processor

R12000 CPU time. In contrast, Case 8 required 100

point-implicit relaxation steps and 5660 line-implicit
relaxation steps for 16.3 CPU hours to drop the L2
error norm to 3. I 10 7. (In general, these test cases

with large separation and fine stream wise _'ids are

more susceptible to ringing of the flux limiter and
require smaller Courant numbers to reduce ringing.

The sharp double cone results section includes
additional discussion on this issue of stalled

convergence.)
Eigenvalue limiter: The eigenvalue limiter

provides positive definite dissipation in the upwind
scheme when Roe averaged eigenvalues on an i face

are less than 2e,. (Limiters in thej direction spanning

the boundary layer utilize an additional reduction
factor.) The limiting is only engaged in regions where
there is flow reversal or near-sonic velocity.

Expansion shocks are admitted without the limiter.

Previous experience with attached, fully supersonic
flow indicates that the smaller limiter provides more

accurate solutions on coarser grids while the larger
values of the limiter enhance solution robustness.

Little effect is seen in the unadapted grid between
Case 1 and 2. A 1.6 mm difference (approximately
two stream wise cells) in the separation point is

observed for the adapted, coarse grid result (Case 4

versus Case 5). The larger eigenvalue limiter in this
comparison provides better agreement with the Case

! 2 reference, in contradiction to previous experience
as noted above. Subsequent cases retain use of the

smaller value (eq = .001) in keeping with prior
experience. The separation point for Run 12 on the

5



finest grids occur within the same cell for E, = 0.001
or 0.300.

Physical models: The additional cross derivative
terms included in Case 7 for the NS equation set

provide insignificant (within l stream wise ceil)
difference in location of the separation point as

compared to the TLNS equation set of Case 6.
The thermal eqt, ilibrium option for single species

nitrogen engages the curve fits for heat capacity,

including effects of vibrational excitation ignored in
the perfect gas (PG) model. It also engages curve fits
for collision cross section (C) to compute transport

properties rather than using Sutherland's law (S) and
constant Prandtl number in the PG model. When

vibrational excitation is included under conditions of

thermal equilibrium (,Case 10) a decrease in
separation extent is observed (-6 ram) as compared
to the PG mode (,Case 6). However, when thermal

nonequilibrium effects are included (Case 1 I) the

vibrational temperature stays relatively low,
vibrational energy modes are not significantly

populated, and the constant ¥ approximation of the
PG model is more accurate. In this situation, the

onset of separation for the TN model (Case I I) is

only about 0.6 mm delayed as compared to the PG
model (Case 6).

Comparison of cases 6, 10, and 11 for surface

pressure coefficient and Stanton number are

presented in Figures 6-9. They confirm on a global
,and detailed basis the near equivalence of the PG and
TN models for conditions of Run 8.

Influence of Mach Number and Reynolds

_: Runs 8, 9,and 11 exhibit a variation in

Reynolds number at approximately constant Mach
number 11.3. Surface pressure coefficient and
Stanton number for these three runs using consistent

grids, gas model, and numerical parameters from

Case 9 are compared in figures 10-14. The extent of
separation increases with increasing Reynolds

number. The over-expansion on the flare is more
pronounced at the higher Reynolds number (Run 8).

The influence of Mach number is investigated by

comparing Run 14 at Mach 9.5 to Runs 9 and l I at
Mach I 1.4. The free stream Reynolds numbers for
Runs 9 and I l bound the Run 14 Reynolds number.

The extent of separation for Run 14 is also bounded

by the extent of separation for Runs 9 and l 1, as

shown in figures 10-14. The effect of Mach number
over this limited range appears to be much less

significant than the effect of Reynolds number.
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Figure 6: Surface pressure coefficient (global view)
over HCEF from Run 8 showing effect of

thermodynamic model.
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Figure 9: Stanton number (global view) over HCEF

from Run 8 showing effect of thermodynamic model.

Figure 12: Detail from figure 11 showing magnitude

of over-expansion and reflected waves•
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Figure 10: Influence of Reynolds number and Mach

number on pressure coefficient over HCEF cylinder.

Figure i 3: Influence of Reynolds number and Math

number on Stanton number over HCEF cylinder.
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Figure 11" Influence of Reynolds number and Mach

number on pressure coefficient over HCEF flare.

Figure 14: Influence of Reynolds number and Mach

number on Stanton number over HCEF flare.



Black - Extended Flare- Run 8

Red . TnJncaled Flare- Run 18

Figure 15: Surface pressure coefficient distribution
and overlay of pressure coefficient contours from
Run 8 (black) and Run 18 (red) around peak pressure.
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Figure 16: Surface pressure coefficient distribution

and overlay of pressure coefficient contours fi'om
Run 8 (black) and Run 18 (red) around peak pressure

point.

Truncated Flare Effect: The attachment point for

Run 8, the largest Reynolds number test, on the
extended flare is situated approximately 8 mm

upstream of the corresponding truncated flare
expansion corner. The peak pressure for Run 8
below the shock-shock interaction is located on the

extended flare at the equivalent location of the

expansion corner on the truncated flare. Run 18 over
the truncated flare has equivalent Mach and Reynolds
numbers as Run 8. The attachment point for Run 18

is constrained by the expansion comer; flow relief

through expansion at this comer reduces the extent of

separation. This point is illustrated in figure 15 in
which pressure contours in the vicinity of the

attachment point for Run 8 (Case 12) and Run 18
(Case 5) are compared. The corresponding pressure

contours at the separation point are presented in

figure 16.
Grid Convergence: Grid convergence of surface

pressure coefficients and Stanton number using

equivalent physical models and numerical parameters
are documented in figures 17-20 for Run 8 (HCEF).

Figure 17 features a global view of Cp convergence

as a function of_id density. Figures 18 and 19 focus
on the separation and attachment points. Only a

global view of Stanton number convergence as a
function of grid is presented because relative
differences follow the same trend as presented in

corresponding figures for Cp. Also, corresponding

figures for Run 18 are similar to Run 8 results and are
not presented. Runs 8 and 18 are at nearly equivalent
free stream conditions.

1.4- - T

1 11,2" I

0 05 1 15 2 25 3

_L

Figure 17: Surface pressure coefficient as function of

grid resolution for Run 8 over HCEF.
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Figure 18: Detail of figure 17 around separation

point.
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Figure 19: Detail of figure 17 near attachment point.

Both grid convergence tests exhibit residual

convergence for the first three grid densities (272 x
96), (544 x 96), and (1088 x 96); both experience

stalling of convergence for the finest grids (1544 x
192) in Run 8 and (2176 x 192) inRun 18. Stream

wise grid convergence is evident for the three cases

with 96 points across the shock layer. A subsequent
refinement across the shock layer (192 points)

Figure 20: Stanton number as function of grid
resolution for Run 8 over HCEF.

induces a slight, earlier onset of separation but low-

level oscillations are not damped and the residuals
fail to converge. There is no large-scale motion

evident in the hollow cylinder flare cases when the
residual hangs in this manner. However, this behavior

is more profound in the SDC tests described in the
next section.

Case

1"

2"

3"

4"

5"

6"

7

8

9

10

il

12

13

(I x J)

64 x 64, U

128 x 128, U

256 x 128, U

256 x 128, U

512 x 256, U

512 x 256, A

512 x 256, U

1024 x 256, U

512 x 256, U

512 x 256, U

512 x 256, U

512 x 256, U

512 x 256, U

Table 4: LAURA Cases for Run 28

F-.,i

0.300

0.300

0.300

0.300

0.300

0.300

0.300

0.001

0.001

0.001

0.00 l

0.001

0.001

Used preliminary conditions:

Tv, _ = 1000 K

Viscous State

TLNS, S PG

TLNS, S PG

TLNS, S PG

NS, S PG

TLNS, S PG

TLNS, S PG

NS, S PG

NS, S PG

TLNS, C TN

TLNS, C TN**

TLNS, C TE

TLNS, S TN

NS, S TN

0.7676

0.7974

0.6540

0.6505

0.5580

0.5634

0.5713

0.5555

0.7176

0.7209

0.8410

0.7013

O.6944

V_ =2658 m/s, p= =

A S:,ep , mm

3.70

1.85

0.926

0.926

0.463

0.463

0.463

0.231

0.463

0.463

0.463

0.463

0.463

xatt/L mSan, mm

1.083 3.9 I

1.0779 1.96

I.I841 0.978

1.1841 0.978

1.2790 0.489

many
!.281 0.489

1.291 0.245

1. 147 0.489

1.145 0.489

1.084 0.489

1. i 59 0.489

1.161 0.489

).000778 kg/m 3, T= = 198.9 K

Sharp, Double-Cone Results
Qvcrview: Two test conditions involving the

sharp, double cone (SDC) are defined in Table !. The

most comprehensive set of tests were executed for
Run 28 on the SDC configuration to investigate

issues of grid convergence and effects of numerical
parameters and gas models on the computed results
as defined in Table 4. Case ! was initialized with

uniform flow. In all subsequent cases, solutions were

initialized using earlier case converged solutions.

Pressure shaded contours and streamlines for

Run 28, Case 8, are shown in figure 21 focusing on

the interaction region surrounding the cone-cone
junction. The flow develops in much the same way as
described previously for the HCEF. The relative 30 °

angle of the second cone to the first is the same angle
as the HCEF and HCTF tests. The separation shock

sets up on the first cone at x/L -0.55. The separated
flow extends from this point to x/L - 1.3 on the

second cone. The dividing streamline sits

9



approximatelyhalfwaybetweenthejunctionpoint
andtheshock.UnliketheHCEFsimulations,a
counter-rotatingvortexsetsupwithinthelarger
separationbubbleabovethecone-conejunction.A
complexseriesofinteractingshocksandexpansions
setsupdownstreamoftheshock-shockinteraction
andtheterminationoftheseparationbubble.Figures
22and23will focusontheseinteractions.

Figure22showspressure,streamlines,andsonic
lineinaviewthatzoomsinontheinteractionregion.
Thedividingstreamlineoftheseparationregionis
slightly concave, forming a compression boundary in

the region 1. l<x/L<l.25. Compression waves focus
to the center of the shock layer where they interact

with a shock emanating from the shock-shock
interaction. The interaction of these two waves

appears to form a Mach disk, behind which a
subsonic, high-pressure zone is formed, bounded by
two transmitted shocks. (Details of these structures

are somewhat muted by grid resolution of 0.14 mm

by 0.24 mm in this region.) The upward running
shock reflects as an expansion off the dividing

streamline passing through the shock-shock
interaction point. This streamline bounds an

approximately constant pressure region and closely
follows the sonic line. The downward running wave
terminates on the tail of the recirculation zone. There

is an expansion off the tail of the recirculation zone
that ultimately reflects from the upper dividing
streamline / slip surface containing the sonic line.

Subsequent wave reflections continue in the expected

manner; compression waves reflect from solid
boundaries as compressions and reflect from constant

pressure surfaces as exp,-msions. Expansion waves
reflect from solid boundaries as expansions and from
constant pressure surfaces as compressions 12.

0.75

0.5

0.25

0.5 0.'/'5 1 1.25
x/L

Figure 21" Pressure contours (flooded) and
streamlines over interaction region of SDC for Run

28, Case 8.

1.1

1.05

1

0.95

,.I
"_ 0.9

0.85

0.8

0,75

0.7

--- _ ,/5 i_'

I_ i , i i i i i L_, i _ , i
i t.t 1.2 1.3 1,4

_L

Figure 22: Detail of interaction region for Run 28
with pressure contours (thin, multi-colored lines),
streamlines (thin, black lines), and sonic line (thick,

red line).

0.7 , .... , .... , , , ,
1 t,1 t.2 1.3 1.4

_L

Figure 23: Detail of interaction region for Run 28

with density contours (thin, multi-colored lines),
streamlines (thin, black lines), and sonic line (thick,

red line).

Figure 23 highlights the slip surface emanating
from the shock-shock interaction using density

contours. The high-density gradient defines the

viscous slip surface; it contains the dividing
streamline and sonic line. Flow is supersonic beneath

the slip surface and subsonic above it.
The test cases for Run 28 in Table 4 are chosen

to demonstrate grid convergence and test effects of

physical models and numerical parameters. Effects of
eigenvalue limiter and choice of TLNS or NS

10



equation sets have minimal impact on results,
consistent with observations for the HCEF. Grid

convergence studies and tests involving thermal
nonequilibrium models exhibited behaviors not
observed in the HCEF tests; these behaviors are

discussed in the following sections.

5

4.5

4

3.5

3

O" 2.5

2-

1.5

1

0.5

0.5

r

128 _ 128

-- - ....... 256-"_-8

.... 512 x 256

;, , to_4_25
,i ii

:I" ! !

111111

1 1.5 2

x/L

Figure 24: Grid convergence study for Run 28 -
surface pressure coefficient.
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0.t5
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o.1

0.075

0.05

0.025
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I 4 !
1281128 Case2

........ 2581128 Case3

.... 512 x 256 C41se 5

1024 x 256 Case 8 --

i i

0.5 1 1,5 2

x/L

Figure 25: Grid convergence study for Run 28 -
Stanton number.

Grid and Residl,_oJ Convergence: Grid
convergence trends for Run 28 are documented in

figure 24 (Cp) and in figure 25 (St). The separation
point moves forward as grid is refined, consistent
with trends observed in the HCEF tests. The

complex, reflected wave pattern noted in figures 22
and 23 causes multiple peaks and valleys downstream
of reattachment. The final stream wise doubling of

grid produces negligible change in surface pressure
or heating. A subsequent attempt to double the grid in

the normal direction initiated slight, upstream
movement of the separation; however, the separation

bubble became highly unstable and the large-scale

motion would never damp out. Repeated attempts to
nurse the solution by decreasing Courant number,

changing order of relaxation sweeps, or using more
conservative relaxation factors would delay but not

eliminate the problem.
The cause of this numerical unsteadiness is

unknown. Such large-scale motions were not detected

experimentally. In general, the minmod operator used
in the flux limiter to obtain 2"d-order accuracy away

from discontinuities could possibly serve as a

disturbance source that is amplified by this specific
combination of algorithm and flow physics. The

minmod function compares three characteristic
_adients in the neighborhood of a cell wall; the

function makes discrete choices regarding which

argument to return depending on relative magnitudes
and signs. While the minmod function is known to

occasionally introduce ringing in the residual
convergence in the vicinity of shocks (due to cycling

of the returned argument) a problem of inducing
major unsteadiness has not been observed previously

in LAURA applications. This issue is further
explored in the simulation of Run 24 while

examining effect of Reynolds number.

Effect of Reynolds Number: The effect of
Reynolds number is explored by comparing Run 24
with Run 28. As noted in Table I, the Reynolds

number for Run 24 is nearly double that of Run 28.
Based on experience with HCEF trends, the

separation point for Run 24 would be expected to
move upstream. The Run 24 simulation was
initialized from Run 28, Case 7, and used the same

grid and numerical parameters to generate the

solution. The separation point was observed to move

upstream, approaching x/-L = 0.4. As the simulation
continued large-scale unsteadiness developed, just as
observed in Run 28 albeit on a much finer grid.

Run 24,

Run 28,

_ -

0.5

I
lst-ocder

2nd-ord_

1 1.5

_L

Figure 26: Comparison of surface pressure
coefficient including combined effect of Reynolds

number and order of accuracy.
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0.2_ I
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o.1

0.05 _ \

O_ _ _ _ _0.5

' B
Run 24, lsl-order

Run 28, 2nd-ocder

E _
J

!

1.5 2

x/L

Figure 27: Comparison of Stanton number including
combined effect of Reynolds number and order of

accuracy.
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Figure 28: Effect of thermodynamic and transport

property models on surface pressure coefficient for
Run 28.

0.4 i ------ TN, C Ca 9
....... TE C Csoe11

0,35 ! ; .... TN',S Case 12

i-! --P_s e.
o.s _!! ---- - '

/

o.,,.
0.1 .I, t1!" '- --

: i jii
o_ _

0 0.5 1 1.5

x/L

Figure 29: Effect of thermodynamic and transport

property models on Stanton number for Run 28.

Since the higher-order treatment is suspected of

inducing the instabilities a simulation for Run 24 was
made that included only the ! _torder flux

differencing. This solution converged and is
compared to Run 28 in figures 26 and 27. The

separation point for the higher Reynolds number case
occurs earlier than the lower Reynolds number case.

It is assumed that the difference in separation
location would be larger if both simulations were 2°_-
order accurate.

Effect of (_s Model: A comparison of perfect

gas, thermal equilibrium and thermal nonequilibrium

gas models for Run 28 are presented in figures 28
and 29. A comparison of the viscosity models is also

included, revealing no significant difference between
the Sutherland's law and N2 collision cross section

curve fits when used in conjunction with the same

thermodynamic model (Case 9 and Case 12).

The thermal equilibrium simulation shows
significant reduction in separation extent, even larger
than observed with HCEF results in figures 6 and 9.

At the_Tnal equilibrium temperatures, vibrational

energy modes are engaged and the simulation would

not be expected to match the constant y, perfect-gas
results.

The thermal nonequilibrium simulation shows

larger extent of separation than the thermal
equilibrium case in figures 28 and 29. This result is
consistent with HCEF results in figures 6 ,and 9.

Vibrational temperatures are essentially frozen at free
stream levels, except for slight increases in the

recirculation region and farther downstream over the

expansion corner. The ratio of specific heats is
effectively constant and yet a_eement with perfect

gas results is poor, unlike the HCEF results.
The Roe's averaging algorithm involves

additional quantities for the general case of
thermochemical nonequilibrium. It is at first glance
surprising that these small algorithm differences

could support such a large difference in separation
extent; especially considering that good agreement in

the HCEF tests was obtained. A plot of pressure
contours, streamlines, and sonic line for Case 9 (not

shown) equivalent to figure 22 indicates the absence
of the subsonic cove. In this case, there appears to be

a regular reflection rather than Mach reflection. The
approach of the dividing streamline to the surface is
smoother at the tail of the recirculation bubble. If this

test is at the cusp of conditions where subtle changes

can support either regular or Mach reflection beneath
the shock-shock interaction then the observed

differences for very similar gas models and

supporting algorithms may be credible.
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Summary
A series of numerical simulations were

conducted of experiments performed in the LENS

facility for the purpose of code validation under
hypersonic conditions. The experiments were

conceived to challenge simulation capabilities under
conditions of large-scale separation while minimizing

complicating factors associated with turbulence, gas

chemistry, and ttu'ee-dimensionality. Experimental
data will not be released until numerical simulations

are reported.
Nominal test conditions are at Mach 9.5 and 11.4

at Reynolds numbers varying from 144000 to 360000

per meter. Three axisymmetric models are considered
in this report. Two hollow cylinders with sharp
leading edges and 30 ° flares are studied in the first

series of tests. A truncated flare slightly limited

extent of separation for the highest Reynolds number
tested. A sharp, double cone (25"/55°), including a
30 ° compression is studied in the second series of

tests. The models are roughly 20 cm in length and 13
to 26 cm in diameter.

Numerical simulations show increasing extent of

separation with increasing Reynolds number and

significant movement of the separation point over the
tested range. Mach number was not a significant

factor affecting separation for the limited range
considered here. All simulations required finer grids

than what might be considered "intuitively" expected
in order to achieve grid converged results.

The hollow cylinder results exhibited very slight

increase in separation between the two finest grids
tested. Residual convergence was generally good,

though some tests showed convergence that stalled,
probably due to the non-linear minmod limiter. The

sharp, double cone results at the lowest Reynolds

number appeared to show grid convergence, but
massive instabilities manifested when an additional

level of refinement was introduced. The highest

Reynolds number double cone test required 1St-order

dissipation in order to get any convergence. Very
complex wave reflections were observed in the

double cone tests. A possibility of supporting either
regular reflection or Mach reflection was noted which

might explain sensitivity of results to grid and

physical models.
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